

1

APPLICATION ACCESS MANAGER

AAM INTEGRATION - TECHNICAL DOCUMENTATION TEMPLATE

DOCUMENT PURPOSE : THIS TEMPLATE IS TO BE COMPLETED BY PARTNER AND IS

REQUIRED FOR CYBERARK SECURED CERTIFICATION. THE A AM INTEGRATION TECHNICAL

DOCUMENTATION WILL BE MADE AVAILABLE TO PARTNERS, CUSTOMERS AND PROSPECTS.

Name of Company Celonis

Website https://www.celonis.com/de/

Name of Product Celonis Process Mining

Version 4.7.1 and higher

Date JUNE 16, 2021

https://www.celonis.com/de/

2

PARTNER SOLUTION OVERVIEW

Celonis is a powerful software for retrieving, visualizing, and analyzing real as-is business processes from

transactional data. It provides users with the possibility to create and share comprehensive process

analyses giving them full transparency about the business processes at hand.

The software consists of a web application that can connect to various databases. The installation

package is available as Windows Installer or a Linux executable run file for common distributions (RHEL7,

SLES12, Ubuntu18). The integration will be implemented for application version 4.7.1 and higher.

KEY BENEFITS

Celonis is an enterprise-proven Process Mining solution that analyzes all kinds of processes. It offers

powerful features for the administration of user roles, data, and analyses. It effortlessly scales for even

the largest Big Data scenarios while maintaining a low data footprint.

With this integration, the Celonis end-user does not have to enter sensitive database credentials into

the configuration files or the frontend of the application anymore.

3

PRODUCT DIAGRAM & DESCRIPTION OF PRODUCT INTEGRATION

Every instance of the Application service (Application#1, Application#N):

• Is independent (not depending on load-balancers, firewalls, common configuration files, etc.)

• Has its own SDK classes

• Has its own configuration files/properties

• Is Agent AAM Based hence “requires a dedicated AAM agent to be locally installed” (refer to

Application Access Manager Integration Instructions in the AAM INTEGRATION GUIDE). This

means each Application#N requires that the service is running on the same instance (aimprv

for Linux, CyberArk Application Password Provider service for Windows)

• Requires the registration of hostnames for each Application#N to access the Safe/Vaults (refer

to Application Access Manager Integration Instructions - Testing the Installation

Considering these points, the customer is free to install and run as many instances of the application as

needed. No other mid-tier, load-balancers, firewalls, or endpoints configuration is required.

4

Triggering the credential retrieval:

Configuration Files: The actual values are retrieved from CyberArk as soon as the request is

resolved by the Java Spring application. In the current implementation this happens during the

Spring Context initialization phase when the application is started.

Frontend/UI configuration: The actual values are retrieved from CyberArk only upon creation

or update of the established data connection (see #Applicable passwords section below for

the complete list of configurable CyberArk connection settings).

Circumstances and frequency of the retrieval:

Configuration Files: Usually, the application service is stopped for configuration and updates.

The frequency depends on the size, landscape and use cases of the customer.

Frontend/UI configuration: This highly depends on the state of the customers implementation.

Any frequency from once per week to multiple times per day is realistic.

AAM INSTALLATION

Refer to the “Credential Provider and ASCP Implementation Guide” or the “Central Credential Provider
Implementation guide” for CyberArk Agent based or Agentless installation and configuration.

Integrating CPM4 with the CyberArk AAM Agent based installation requires the customer to place the
javapasswordsdk.jar runtime library in the <installDir>/lib path of the Celonis 4 installation directory.
The jar file can be found in the CyberArk service installation directory (typically,
/opt/CARKaim/sdk/javapasswordsdk.jar for Linux, C:\Program Files
(x86)\CyberArk\ApplicationPasswordSdk\JavaPasswordSDK.jar for Windows).

AAM CONFIGURATION

DEFINING THE APPLICATION ID (APPID) AND AUTHENTICATION DETAILS

To define the Application, here are the instructions to define it manually via CyberArk’s PVWA

(Password Vault Web Access) Interface:

1. Logged in as user allowed to managed applications (it requires Manage Users authorization), in the

Applications tab, click Add Application; the Add Application page appears.

5

2. Specify the following information:  

• In the Name edit box, specify the unique name (ID) of the application. The recommended

Application ID for this integration is: APP ID = Celonis-CPM4

• In the Description, specify a short description of the application that will help you identify it.

• In the Business owner section, specify contact information about the application’s Business

owner (see PARTNER CONTACT INFO section or request the actual Celonis business

contact).

• In the most cases root location / is sufficient for CPM4 integration

3. Click Add; the application is added and is displayed in the Application Details page.  

6

• Allowing extended authentication restrictions. This enables you to specify an unlimited

number of machines and Windows domain OS users for a single application. Please check

this box.

4. Specify the application’s Authentication details. This information enables the Credential Provider to

check certain application characteristics before retrieving the application password. Partner should

suggest the authentication details to secure the access by the partner’s application.

It is recommended using the hash authentication method. The full guide on how to create an
application hash value can be found here:
https://docs.cyberark.com/Product-Doc/OnlineHelp/AAM-
CP/Latest/en/Content/CP%20and%20ASCP/Generating-Application-Hash-Value.htm

Specifying the application hash:
Caveat: It might take some time to for the configuration to apply after submitting the hash
values within the CyberArk configuration.

The CPM4 application is a complex application, which includes classes, wrapped to several levels
of *.jar and *.war files, running inside the web-application service, which is executed by a

jsvc runner. Therefore, calculating a HASH of the specific class using the AIMGetAppInfo
utility is not possible under every circumstance. Thus, the following workaround is recommended
to calculate the hashes:
a. By default, the application hash is not validated. “Enable” the hash authentication at

Components->Application->Hash configuration by specifying a dummy value (for instance:
00

00#dummy hash

):

You can add additional information in a comment after each hash value specified for an
application by putting ‘#’ after the hash value, followed by the comment.

b. Start the CPM4 application (sudo ./start.sh or starting the Windows Service)

https://docs.cyberark.com/Product-Doc/OnlineHelp/AAM-CP/Latest/en/Content/CP%20and%20ASCP/Generating-Application-Hash-Value.htm
https://docs.cyberark.com/Product-Doc/OnlineHelp/AAM-CP/Latest/en/Content/CP%20and%20ASCP/Generating-Application-Hash-Value.htm

7

c. Review the error logs (by default - logs/stderr) and find the CyberArk exception

message regarding the application hash authorization:
$ sudo tail -n 100 -f logs/stderr
…
de.celonis.pm.utils.properties.exception.PropertyResolveException: Can't

retrieve password for Cyberark property "appid=Celonis-CPM4-test-by-

hash&safe=Celonis-CPM4-Safe&object=database.password&reason=cpm4-

application-local-test".
Reason: APPAP133E Failed to verify application authentication data: Hash

"5C4B13E3D22EC9DD00EBBAAE352FDAA1DF5D83A6B9D52FD76D586BE163AE8AD13BAB52BCB

B907B64E81BE991ACABA56663F50EE231BC7F02CDB170756A2274E9" is unauthorized
Caused by: class javapasswordsdk.exceptions.PSDKException: APPAP133E

Failed to verify application authentication data: Hash

"5C4B13E3D22EC9DD00EBBAAE352FDAA1DF5D83A6B9D52FD76D586BE163AE8AD13BAB52BCB

B907B64E81BE991ACABA56663F50EE231BC7F02CDB170756A2274E9" is unauthorized

d. The same result could be found in the aimprv service error logs:

$ sudo service aimprv status
Jun 07 11:34:26 CEL-LP-961 appprovider[23298]: CyberArk AIM[23298]:

APPAU002E Provider [Prov_CEL-LP-961] has failed to fetch password

with query [Object=database.password;Safe=Celonis-CPM4-Safe] for

application [Celonis-CPM4-test-by-hash]. Fetch reason: [APPAP133E

Failed to verify application authentication data: Hash

"5C4B13E3D22EC9DD00EBBAAE352FDAA1DF5D83A6B9D52FD76D586BE163AE8AD13B

AB52BCBB907B64E81BE991ACABA56663F50EE231BC7F02CDB170756A2274E9" is

unauthorized]

e. Add this hash to Components->Application->Hash:

f. Restart the CPM4 application: sudo ./stop.sh ; sudo ./start.sh or by starting

and stopping the Windows service

g. Review the stdout logs (logs/stdout) or the aimprv service logs (sudo service

aimprv status) to find the new full-path class hash, including all *.jar/*.war

wrappers:
$ sudo tail -n 100 -f logs/stdout
Can't retrieve password for Cyberark property "appid=Celonis-CPM4-test-by-

hash&safe=Celonis-CPM4-Safe&object=database.password&reason=cpm4-

application-local-test".
Reason: APPAP133E Failed to verify application authentication data: Hash

"5C4B13E3D22EC9DD00EBBAAE352FDAA1DF5D83A6B9D52FD76D586BE163AE8AD13BAB52BCB

B907B64E81BE991ACABA56663F50EE231BC7F02CDB170756A2274E9;12E283CC545D9404E3

571AC4DDA80E1A27644CF254C37A3FC164F543D57125C68B2FCBCE8C4685216AEAB80A23C6

8

E05484C394C275339CEAC3C03448E6496B22;3C722CEBFB18CBB049BC55DF6707AEC497952

D8F1ECDC7EEB876613013A299DA212EC812361BCC6CA32FC7FB5E5278E298B588902F42FF5

19DF514C3C27F17BD;0FDEE74CF1A05A9562EE8059FF33D4450E07FC4A94C31F5BE449235B

D34E45030FA29BEA0FF1929C7D5052577A5DD5794A2C65956783BBB207C4E53584C868D5;3

F55F4F57D4E1DC0B30110E52D379E536ADA0B613FDBC905661FAEF5CB022BAAFD0F4D41818

59974911A753C73820A134D77553C696C4C3E075F261BD4D3DF8B;A1F54457D71B44CF9069

58F0552951F753B3B7BEB05CC5660D913388F0910ED72D0C302C5150EC49641DA174E46C07

B52FE75D8DAF0DE1D2130212089E1B46D7" is unauthorized; nested exception is

de.celonis.pm.utils.properties.exception.PropertyResolveException: Can't

retrieve password for Cyberark property "appid=Celonis-CPM4-test-by-

hash&safe=Celonis-CPM4-Safe&object=database.password&reason=cpm4-

application-local-test".

Caused by: class javapasswordsdk.exceptions.PSDKException: APPAP133E

Failed to verify application authentication data: Hash

"5C4B13E3D22EC9DD00EBBAAE352FDAA1DF5D83A6B9D52FD76D586BE163AE8AD13BAB52BCB

B907B64E81BE991ACABA56663F50EE231BC7F02CDB170756A2274E9;12E283CC545D9404E3

571AC4DDA80E1A27644CF254C37A3FC164F543D57125C68B2FCBCE8C4685216AEAB80A23C6

E05484C394C275339CEAC3C03448E6496B22;3C722CEBFB18CBB049BC55DF6707AEC497952

D8F1ECDC7EEB876613013A299DA212EC812361BCC6CA32FC7FB5E5278E298B588902F42FF5

19DF514C3C27F17BD;0FDEE74CF1A05A9562EE8059FF33D4450E07FC4A94C31F5BE449235B

D34E45030FA29BEA0FF1929C7D5052577A5DD5794A2C65956783BBB207C4E53584C868D5;3

F55F4F57D4E1DC0B30110E52D379E536ADA0B613FDBC905661FAEF5CB022BAAFD0F4D41818

59974911A753C73820A134D77553C696C4C3E075F261BD4D3DF8B;A1F54457D71B44CF9069

58F0552951F753B3B7BEB05CC5660D913388F0910ED72D0C302C5150EC49641DA174E46C07

B52FE75D8DAF0DE1D2130212089E1B46D7" is unauthorized

NOTE: There are multiple hashes that are semicolon separated

h. Split the hashes and put all of them to Components->Application->Hash:

i. Restart CPM4 application: sudo ./stop.sh ; sudo ./start.sh or by starting and

stopping the Windows service.
j. The hash values are now specified and ready to be used.

9

PROVISIONING ACCOUNTS AND SETTING PERMISSIONS FOR APPLICATION ACCESS

For the application to perform its functionality or tasks, the application must have access to existing

accounts, or new accounts to be provisioned in CyberArk Vault (Step 1). Once the accounts are managed

by CyberArk, make sure to setup the access to both the application and CyberArk Application Password

Providers serving the Application (Step 2).

1. In the Password Safe, provision the privileged accounts that will be required by the application. You

can do this in either of the following ways:  

• Manually – Add accounts manually one at a time and specify all the account details.  

• Automatically – Add multiple accounts automatically using the Password Upload feature.

 For this step, you require the Add accounts authorization in the Password Safe.

For more information about adding and managing privileged accounts, refer to the Privileged

Access Security Implementation Guide.

2. Add the Credential Provider and application users as members of the Password Safes where the

application passwords are stored. This can either be done manually in the Safes tab, or by specifying

the Safe names in the CSV file for adding multiple applications.

i. Add the Provider user as a Safe Member with the following authorizations:

• List accounts

• Retrieve accounts

• View Safe Members

Note: When installing multiple Providers for this integration, it is recommended to

create a group for them, and add the group to the Safe once with the above

authorization.

10

ii. Add the application (the APPID) as a Safe Member with the following authorizations:

11

• Retrieve accounts

iii. If your environment is configured for dual control:

• In PIM-PSM environments (v7.2 and lower), if the Safe is configured to require

confirmation from authorized users before passwords can be retrieved, give the

Provider user and the application the following permission:

o Access Safe without Confirmation

• In Privileged Account Security solutions (v8.0 and higher), when working with dual

control, the Provider user can always access without confirmation, thus, it is not

necessary to set this permission.

iv. If the Safe is configured for object level access, make sure that both the Provider user and

the application have access to the password(s) to retrieve.

12

For more information about configuring Safe Members, refer to the Privileged Access Security

Implementation Guide.

PARTNER PRODUCT INSTALLATION & INTEGRATION CONFIGURATION

Refer to the Celonis Installation Guide (Celonis Operation Guide) for Partner Product installation. You

will find a separate section on how to set up the integration there.

Password retrieval
After connecting Celonis to CyberArk, the Java Properties of every custom *. properties file inside the
Celonis installation directory can be configured for retrieval via CyberArk.

Prerequisites

1. The javapasswordsdk.jar runtime library supplied by CyberArk has been placed in the

<installDir>/lib folder in the Celonis 4 installation directory.
2. The CyberArk Credential Provider Agent (aimprv service on Linux, CyberArk

Application Password Provider Service on Windows) is running on the same instance
as the Celonis service.

Properties configuration
The properties to be retrieved via CyberArk need to have the following format:
<<property.name>>=cyberark-sdk:<<LIST_OF_OBJECT_ARGUMENTS>>

With:

<<property.name>> Java Property name to be retrieved. For example
 database.password.

cyberark-sdk: Mandatory prefix for the use of CyberArk (colon
 included)

<<LIST_OF_OBJECT_ARGUMENTS>> URL-encoded string of CyberArk object request arguments (e.g.
AppID, Safe, Object, Reason) in a URL query format. Properties
are separated by “&”. Property name and value are separated
by “=”.

Example

database.password=cyberark-

sdk:appid=yourcompanyappid&safe=safename&object=objectname&reason=cpm4-application-db-

configuration

13

Frontend configuration
The frontend configuration follows the same rules as the configuration of the properties. Retrieving the
passwords requires the following format:

cyberark-sdk:<<LIST_OF_OBJECT_ARGUMENTS>>

Example
cyberark-sdk:appid=yourcompanyappid&safe=safename&object=objectname&reason=cpm4-
application-db-configuration

Applicable passwords
The frontend integration is limited to four specific fields. The following password fields can be retrieved
from CyberArk:

• The password to connect to a database from within a Data Model:

• The “LDAP password” in System Settings → Source Configurations → LDAP Sources and the

“Database password” in System Settings → Source Configurations → Database Sources:

14

• The SMTP Server Password in System Settings → Mail

Notes

• appid, safe, object and reason are typical CyberArk request arguments. This example could be
extended according to all single String setter names (e.g. setPolicyID(String) -> policyid,
setFolder(String) -> folder, ...) that are supported by the CyberArk Java SDK. Please follow the
PSDKPasswordRequest java class documentation for all supported arguments.

• The request arguments are case-insensitive

• As <<LIST_OF_OBJECT_ARGUMENTS>> is a URL-encoded string, one could leverage the usage by
URL-encoding the values. For example the request with reason="Some reason” and extended

chars: []{}\\/ [陰]{陽}" could look like this:

15

database.password=cyberark-sdk:appid=testappid&safe=test&object=cpm4&reason=
%22Some%20weird%20quoted%20reasn'%20with%20extended%20chars%3A%20%5B%5D
%7B%7D%2F%2C%20and%20chinese%20hieroglyphs%20%5B%E9%99%B0%5D%7B%E9%99
%BD%7D%22

Celonis recommends the usage of the AAM integration for the following exemplary cases:

• In Configuration Files (config-custom.properties,

component_configurations/access-logging.properties,

component_configurations/login-logging.properties) to protect the following

properties (if used by the customer):
o database.password

o mail.password if active

o server.ssl.* properties if SSL connection to the running CPM4 instance is enabled

o saml.keystore.* properties, if SAML authentication is enabled
o jwt.secret

o access_logging.database_password, if access logging to the database is

configured (access_logging.enabled=true && access_logging.database=true)

o login_logging.database.password, if login logging to the database is configured

(login_logging.enabled=true && login_logging.database=true)

o any other properties which the customer considers to be sensitive.

• In Frontend/UI:

o Depending on how strongly the customer trusts the security of the CPM4 application

configuration database, Celonis recommends:

▪ If the customer trusts the database protection – additional protecting of the

Frontend/UI properties is not needed

▪ If the customer expects that data can leak from the configuration database –

the customer could apply additional protection to the passwords described in

Applicable passwords above (Data Models, LDAP/Database sources, SMTP).

16

PARTNER CONTACT INFO

Business Contact

Name Matthias Höfler
Partner Manager

Email m.hoefler@celonis.com

Tel +13 4746 13566

Technical Contact

Name Andrii Kovalenko
Engineering Lead

Email a.kovalenko@celonis.com

Tel +49 (1516) 8943150

Support Contact

Name Jörg Dörries
Head of Customer Support

Email j.doerries@celonis.com

Tel +49 8921 5396144

